79 research outputs found

    PEDAGOGICAL CONDITIONSOF FORMATION OFCREATIVE POTENTIAL OF ARTS FACULTY STUDENTS

    Get PDF
    Based on the analysis of scientific literature, the article summarizes views of scientists on pedagogical conditions for effective training of specialists in the field of art education. The specifics of the professional training of teachers of musical art and choreography, which is conditioned by pedagogical orientation and different types of performing activities, have been determined. The author's definition of the creative potential of students of art faculties is offered. Based on the definition of the concept of "potential", the role of adequate pedagogical conditions for the formation of the creative potential of students of the faculties of arts, which is the result of the formation and self-realization of the individual through the disclosure of his potential opportunities for creative activity, is emphasized. The application of the methods of theoretical analysis, systematization and generalization made it possible to identify and substantiate the pedagogical conditions for the formation of the creative potential of students of the faculties of arts, which ensure its effectiveness.Key words: potential, students, creativity, art education, pedagogical conditions

    A Deep Learning Reconstruction Framework for Differential Phase-Contrast Computed Tomography with Incomplete Data

    Full text link
    Differential phase-contrast computed tomography (DPC-CT) is a powerful analysis tool for soft-tissue and low-atomic-number samples. Limited by the implementation conditions, DPC-CT with incomplete projections happens quite often. Conventional reconstruction algorithms are not easy to deal with incomplete data. They are usually involved with complicated parameter selection operations, also sensitive to noise and time-consuming. In this paper, we reported a new deep learning reconstruction framework for incomplete data DPC-CT. It is the tight coupling of the deep learning neural network and DPC-CT reconstruction algorithm in the phase-contrast projection sinogram domain. The estimated result is the complete phase-contrast projection sinogram not the artifacts caused by the incomplete data. After training, this framework is determined and can reconstruct the final DPC-CT images for a given incomplete phase-contrast projection sinogram. Taking the sparse-view DPC-CT as an example, this framework has been validated and demonstrated with synthetic and experimental data sets. Embedded with DPC-CT reconstruction, this framework naturally encapsulates the physical imaging model of DPC-CT systems and is easy to be extended to deal with other challengs. This work is helpful to push the application of the state-of-the-art deep learning theory in the field of DPC-CT

    Sub-Markov random walk for image segmentation

    Get PDF
    A novel sub-Markov random walk (subRW) algorithm with label prior is proposed for seeded image segmentation, which can be interpreted as a traditional random walker on a graph with added auxiliary nodes. Under this explanation, we unify the proposed subRW and other popular random walk (RW) algorithms. This unifying view will make it possible for transferring intrinsic findings between different RW algorithms, and offer new ideas for designing novel RW algorithms by adding or changing auxiliary nodes. To verify the second benefit, we design a new subRW algorithm with label prior to solve the segmentation problem of objects with thin and elongated parts. The experimental results on both synthetic and natural images with twigs demonstrate that the proposed subRW method outperforms previous RW algorithms for seeded image segmentation

    Interactive Cosegmentation Using Global and Local Energy Optimization

    Get PDF
    We propose a novel interactive cosegmentation method using global and local energy optimization. The global energy includes two terms: 1) the global scribbled energy and 2) the interimage energy. The first one utilizes the user scribbles to build the Gaussian mixture model and improve the cosegmentation performance. The second one is a global constraint, which attempts to match the histograms of common objects. To minimize the local energy, we apply the spline regression to learn the smoothness in a local neighborhood. This energy optimization can be converted into a constrained quadratic programming problem. To reduce the computational complexity, we propose an iterative optimization algorithm to decompose this optimization problem into several subproblems. The experimental results show that our method outperforms the state-of-the-art unsupervised cosegmentation and interactive cosegmentation methods on the iCoseg and MSRC benchmark data sets

    Higher Order Energies for Image Segmentation

    Get PDF
    A novel energy minimization method for general higher-order binary energy functions is proposed in this paper. We first relax a discrete higher-order function to a continuous one, and use the Taylor expansion to obtain an approximate lower-order function, which is optimized by the quadratic pseudo-boolean optimization (QPBO) or other discrete optimizers. The minimum solution of this lower-order function is then used as a new local point, where we expand the original higher-order energy function again. Our algorithm does not restrict to any specific form of the higher-order binary function or bring in extra auxiliary variables. For concreteness, we show an application of segmentation with the appearance entropy, which is efficiently solved by our method. Experimental results demonstrate that our method outperforms state-of-the-art methods

    Referring Multi-Object Tracking

    Full text link
    Existing referring understanding tasks tend to involve the detection of a single text-referred object. In this paper, we propose a new and general referring understanding task, termed referring multi-object tracking (RMOT). Its core idea is to employ a language expression as a semantic cue to guide the prediction of multi-object tracking. To the best of our knowledge, it is the first work to achieve an arbitrary number of referent object predictions in videos. To push forward RMOT, we construct one benchmark with scalable expressions based on KITTI, named Refer-KITTI. Specifically, it provides 18 videos with 818 expressions, and each expression in a video is annotated with an average of 10.7 objects. Further, we develop a transformer-based architecture TransRMOT to tackle the new task in an online manner, which achieves impressive detection performance and outperforms other counterparts. The dataset and code will be available at https://github.com/wudongming97/RMOT.Comment: Accpeted by CVPR 2023. The dataset and code will be available at https://github.com/wudongming97/RMO

    Hierarchical superpixel-to-pixel dense image matching

    Get PDF
    In this paper, we propose a novel matching method to establish dense correspondences automatically between two images in a hierarchical superpixel-to-pixel (HSP2P) manner. Our method first estimates dense superpixel pairings between the two images in the coarse-grained level to overcome large patch displacements and then utilize superpixel level pairings to drive the matchings in the pixel level to obtain fine texture details. In order to compensate for the influence of color and illumination variations, we apply a regularization technique to rectify images by a color transfer function. Experimental validation on benchmark datasets demonstrates that our approach achieves better visual quality outperforming state-of-theart dense matching algorithms
    • …
    corecore